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Generalized Relative Entropies as Contrast
Functionals on Density Matrices

Anna Jenčová1

We use a class of generalized relative entropies on density matrices to obtain one-
parameter families of torsion-free affine connections.

KEY WORDS: generalized relative entropies; information geometry; affine
connections.

1. INTRODUCTION

The aim of quantum information geometry is to introduce the quantum coun-
terparts of the basic structures of the classical theory, namely Riemannian metrics
and families of affine connections. It is an important feature of the classical infor-
mation manifolds, that if invariancy with respect to bijective transformations of
the sample space is required, then these structures are unique (up to a multiplica-
tion factor): the Fisher metric and the family of Chentsov-Amari α-connections
(Amari, 1985; Chentsov, 1982).

Let F = {p(·, θ )|θ ∈ �} be a manifold of classical probability densities with
respect to a common measure P . To define the affine connections, Amari (1985)
used a family of functions

fα(x) =



2

1 − α
x

1−α
2 α 
= 1

log(x) α = 1
(1)

Let lα(x , θ ) = fα(p(x , θ )). The coefficients of the Fisher information metric tensor
and the α-connections are given by

gi j (θ ) =
∫

∂i lα(x , θ )∂ j l−α(x , θ ) dP, ∀α
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�α
i jk(θ ) =

∫
∂i∂ j lα(x , θ )∂kl−α(x , θ ) dP

These connection are torsion-free and the α and −α connections are dual with
respect to the Fisher metric, in the sense that if ∇±α are the covariant derivatives
and X, Y, Z are vector fields, then

Xg(Y, Z ) = g
(∇α

X Y, Z
) + g

(
Y, ∇−α

X Z
)

There are more equivalent ways to introduce the Fisher metric and the affine
connections. In the present paper, we follow the approach of Eguchi (1983), who
used contrast functionals, see also Amari (1985).

A functional ρ over F × F is called a contrast functional if

(i) ρ(θ1, θ2) ≥ 0 for all θ1, θ2 ∈ �

(ii) ρ(θ1, θ2) = 0 if and only if θ1 = θ2

The Riemannian metric and Christoffel symbols of the affine connections are
defined by

gρ

i j (θ ) = − ∂2

∂θi∂θ ′
j

ρ(θ , θ ′)|θ=θ ′ (2)

�
ρ

i jk(θ ) = − ∂3

∂θiθ jθ
′
k

ρ(θ , θ ′)|θ=θ ′ (3)

Let f : (0, ∞) → R be a convex function satisfying f (1) = 0, then

ρ f (θ1, θ2) = Eθ1

[
f

(
p(X, θ2)

p(X, θ1)

)]

defines a contrast functional. It was shown that in this case, gρ

i j = f ′′(1)gi j , where
gi j denotes the coefficients of the Fisher metric and the corresponding affine con-
nection coincides with the α-connection with α = 2 f ′′′(1) + 3 f ′′(1).

As one would expect, the situation is different in noncommutative case. Here,
the equivalent of the Fisher metric would be a Riemannian metric, which is mono-
tone with respect to completely positive trace preserving maps. For manifolds
of n × n density matrices, it was proved by Chentsov and Morozova (1990) that
such metric is not unique. Later, Petz (1996) characterized the class of mono-
tone metrics in terms of operator monotone functions. Nagaoka (1994) defines
the affine α-connection for α = −1 (the mixture connection) using the natural flat
affine structure on density matrices. The exponential connection is defined as its
dual with respect to the given monotone metric. This approach was generalized in
Jenčová (2001a), for all α. Unlike the classical case, the dual connections are not
torsion free in general. In Jenčová (2001b), it was shown that the dual connection
to the α-connection is torsion-free only for a special monotone metric λα .
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Lesniewski and Ruskai (1999) used a class of generalized relative entropies,
defined in Petz (1986), as contrast functionals on (non-normalized) density ma-
trices. It was shown that each monotone metric can be obtained in the form
(2) for a certain convex subset of relative entropies. The aim of the following
paper is to use this subset to obtain a class of torsion free α-connections, such that
α and -α-connections are dual. We question the coincidence with the Fisher metric
and classical affine α-connections on commutative submanifolds, use the language
of statistical manifolds by Lauritzen (Amari et al., 1987), to give formulas for the
Riemannian curvature tensor. We also treat some important examples.

2. GENERALIZED RELATIVE ENTROPIES
AND MONOTONE METRICS

Let D denote the set of n × n complex Hermitian matrices and let D+ be the
subset of positive definite matrices. As an open subset in D, D+ inherits a natural
affine parametrization and has the structure of a differentiable manifold. Let Tρ be
the tangent space at ρ and let λ be the monotone Riemannian metric. Then λ is of
the form (Petz, 1996)

λρ(X, Y ) = Tr X Jρ(Y ), J−1
ρ = f (Lρ R−1

ρ )Rρ

where f : (0, ∞) → R is an operator monotone function satisfying f (t) = t f (t−1)
and a normalization condition f (1) = 1, Lρ and Rρ are the left and right multipli-
cation operator, respectively.

Let G be the set of operator convex functions g : (0, ∞) → R, satisfying
g(1) = 0 and g′′(1) = 1. It is known that each operator convex function with
g(1) = 0 can be written in the form

g(w) = a(w − 1) + b(w − 1)2 + c
(w − 1)2

w
+

∫ ∞

0
(w − 1)2 1 + s

w + s
dµ(s) (4)

where b, c ≥ 0 and µ is a positive finite measure on (0, ∞). The value of a ∈ R

does not influence any of the following structures and therefore two functions in
G that differ only in a will be treated as equal.

LetP be the set of positive finite measures µ on [0, ∞], such that
∫

[0,∞] dµ =
1
2 . Then (4) establishes a one-to-one correspondence between G and P , with c =
µ({0}), b = µ({∞}).

If g is an operator convex function, we define its transpose ĝ by ĝ(w) =
wg(w−1). It is clear that ĝ ∈ G if g ∈ G and that g �→ ĝ induces the map P → P ,
given by µ �→ µ̂, where dµ̂(s) = dµ(s−1).

If g = ĝ, we say that g is symmetric. The subset of symmetric functions in
G will be denoted by Gsym. Let ∼ be the equivalence relation on G

g1 ∼ g2 ⇐⇒ g1 + ĝ1 = g2 + ĝ2.
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The quotient space G|∼ is isomorphic to Gsym. Similarly, Psym denotes the subset
of measures symmetric with respect to the transform s �→ s−1 and we have an
equivalence relation ∼ on P . Let us denote by Gh the equivalence class containing
1
2 h, where 1

2 h ∈ Gsym, and similarly Pm .
In Petz (1986), see also Lesniewski and Ruskai (1999), the following class

of generalized relative entropies on D+ was introduced.

Definition 2.1. Let g ∈ G. The relative g-entropy Hg : D+ × D+ → R is defined
by

Hg(ρ , σ ) = Tr ρ
1
2 g

(
Lσ

Rρ

)
(ρ

1
2 )

Proposition 2.1. (Lesniewski and Ruskai, 1999).
Let g ∈ G and let a, b, c and µ be as above. Then

Hg(ρ , σ ) = aTr (σ − ρ)

+ Tr (σ − ρ)

{
bρ−1 + cσ−1 +

∫ ∞

0

1 + s

Lσ + s Rρ

dµ(s)

}
(σ − ρ)

= aTr (σ − ρ) + Tr (σ − ρ)R−1
ρ k

(
Lσ

Rρ

)
(σ − ρ)

where

k(w) =
∫

[0,∞]

1 + s

w + s
dµ(s) = g(w) − a(w − 1)

(w − 1)2
.

The relative g-entropy can be used to define a Riemannian structure on D+

as follows. Let X, Y ∈ Tρ , then

λρ(X, Y ) = − ∂2

∂s∂t
Hg(ρ + s X, ρ + tY )|s=t=0 = Tr X R−1

ρ ksym

(
Lρ

Rρ

)
(Y )

where

ksym(w) = k(w) + w−1k(w−1) = g(w) + ĝ(w)

(w − 1)2
.

It was proved that this defines a monotone metric, where the corresponding operator
monotone function is f = 1/k. Conversely, for a given monotone metric, we may
put g(w) = (w−1)2

f (w) . The condition g′′(1) = 1 is equivalent to the normalization
condition f (1) = 1. Thus we have

Proposition 2.2. There is a one-to-one correspondence between monotone
Riemannian metrics and equivalence classes Gh.
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3. AFFINE CONNECTIONS

Let θ ∈ � ⊆ R
N be a smooth parameter in D+ and let ∂i = ∂

∂θi
. Let us fix a

monotone Riemannian metric λ onD+ and letGh be the corresponding equivalence
class. Let us choose a function g ∈ Gh . In correspondence with the classical theory,
we define the affine connections ∇g by

�
g
i jk(θ ) = λθ (∇∂i ∂ j , ∂k) = −∂i∂ j

∂

∂θ ′
k

Hg(D(θ ), D(θ ′))|θ=θ ′

It is easy to show that this satisfies the transformation rules of an affine connection.

Proposition 3.1. Let g ∈ Gh. Then the connections ∇g and ∇ ĝ are dual with
respect to λ. Moreover, the connections are torsion-free.

Proof: Consider the natural flat affine structure in D+ and let X be a vector
field, parallel with respect to this affine structure, then X is constant over D+.
As there is no danger of confusion, we will denote its value Xρ ∈ D at ρ by the
same letter. Let X , Y , Z be such vector fields. If g ∈ Gh , then clearly ĝ ∈ Gh and
Hĝ(ρ , σ ) = Hg(σ, ρ), so that

λρ

(∇ ĝ
X Y, Z

) = − ∂3

∂t∂s∂u
Hg(ρ + u Z , ρ + s X + tY )|s=t=u=0

Using the previous section, we get

Xλρ(Y, Z ) = d

dt
λρ+t X (Y, Z )|t=0

= d

dt

(
− ∂2

∂s∂u
Hg(ρ + t X + sY, ρ + t X + u Z )|s=u=0

)
t=0

= λρ

(∇g
X Y, Z

) + λρ

(
Y, ∇ ĝ

X Z
)

so that the connections are dual. Torsion-freeness is obvious. �

Let cg : (0, ∞) × (0, ∞) → R be given by cg(x , y) = 1
y k( x

y ), where k is as in

Proposition 2.1. Note that cg(y, x) = cĝ(x , y) is obtained from w−1k(w−1) and that
csym

g (x , y) = cg(x , y) + cg(y, x) = 1
y ksym( x

y ) is the Morozova-Chentsov function.
From Proposition 2.1, we get

Hg(ρ , σ ) = aTr (σ − ρ) + Tr (σ − ρ)cg(Lσ , Rρ)(σ − ρ) (5)

For σ, ρ ∈ D+, the operator cg(Lσ , Rρ) is positive on the space of n × n complex
matrices with Hilbert-Schmidt inner product 〈X, Y 〉 = Tr X∗Y .
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Proposition 3.2. Let

Ts(X, Y, Z ) = (1 + s) Tr X
1

s Rρ + Lρ

(Y )
1

Rρ + sLρ

(Z )

and let T∞ = lims→∞ Ts. Then

λρ

(∇g
X Y, Z

) = 2
∫

[0,∞]
�Ts(Z , X, Y ) dµ(s) −

−2
∫

[0,∞]
(�Ts(Y, X, Z ) + �Ts(X, Y, Z )) dµ̂(s)

Proof: From (5), we get

λρ

(∇g
X Y, Z

) = − d

ds
Tr {Xcg(Lρ+s Z , Rρ)(Y ) + Y cg(Lρ+s Z , Rρ)(X )

− Xcg(Lρ , Rρ+sY )(Z ) − Zcg(Lρ , Rρ+sY )(X )

− Y cg(Lρ , Rρ+s X )(Z ) − Zcg(Lρ , Rρ+s X )(Y )}|s=0

Further, for ρ , σ ∈ D+ and X, Y ∈ D,

Tr Y cg(Lσ , Rρ)(X ) = 〈Y, cg(Lσ , Rρ)(X )〉 = 〈cg(Lσ , Rρ)(Y ), X〉
= 〈X, cg(Lσ , Rρ)(Y )〉− = Tr Xcg(Lσ , Rρ)(Y )−

It follows that

λρ

(∇g
X Y, Z

) = −2�Tr

{
X

d

ds
cg(Lρ+s Z , Rρ)(Y )

−
[

X
d

ds
cg(Lρ , Rρ+sY )(Z ) + Y

d

ds
cg(Lρ , Rρ+s X )(Z )

]}
|s=0

We have

cg(x , y) = µ({0})x−1 + µ({∞})y−1 +
∫ ∞

0

1 + s

x + sy
dµ(s) (6)

Let us first suppose that µ({0}) = µ({∞}) = 0. Then we compute

d

dt
cg(Lρ+t Z , Rρ)|0 = −

∫ ∞

0
(1 + s)

1

Lρ + s Rρ

L Z
1

Lρ + s Rρ

dµ(s)

d

dt
cg(Rρ , Lρ+tY )|0 = −

∫ ∞

0
s(1 + s)

1

Rρ + sLρ

LY
1

Rρ + sLρ

dµ(s)

so that

− d

dt
Tr Xcg(Lρ+t Z , Rρ)(Y )|0
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=
∫ ∞

0
(1 + s)Tr

1

Rρ + sLρ

(X )Z
1

s Rρ + Lρ

(Y ) dµ(s)

=
∫ ∞

0
Ts(Z , Y, X ) dµ(s)

and

− d

dt
Tr Xcg(Rρ , Lρ+tY )(Z )|0

=
∫ ∞

0
s(1 + s)Tr

1

s Rρ + Lρ

(X )Y
1

Rρ + sLρ

(Z ) dµ(s)

=
∫ ∞

0
(1 + s)Tr

1

Rρ + sLρ

(X )Y
1

s Rρ + Lρ

(Z ) dµ̂(s)

=
∫ ∞

0
Ts(Y, Z , X ) dµ̂(s)

It follows that for each s ∈ [0, ∞),

2�Ts(X, Y, Z ) = Ts(X, Y, Z ) + Ts(X, Z , Y )

so that �Ts is a covariant 3-tensor, symmetric in last two variables. The statement
now follows easily.

Let µ be concentrated in 0 and ∞. It is clear that T∞ = 0 and we obtain by
a direct computation from (6) that

λρ

(∇g
X Y, Z

) = µ({0})(T0(Z , Y, X ) + T0(Z , X, Y )) − µ({∞})(T0(Y, X, Z )

+ T0(Y, Z , X ) + T0(X, Y, Z ) + T0(X, Z , Y )) �

3.1. Families of Connections

Let Gh be the equivalence class corresponding to the monotone metric λ. Let
g ∈ Gh . If g is symmetric, then the connection ∇g is self dual and torsion free,
hence it is the metric connection. If λ is fixed, we denote the metric connection by
∇̄.

Let g 
= ĝ. As Gh is a convex set, it contains all the functions

gα = 1 − α

2
g + 1 + α

2
ĝ

for α ∈ [−1, 1]. If λ and g are fixed, we denote the corresponding connection by
∇α . Then

∇α = 1 − α

2
∇ + 1 + α

2
∇∗
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where∇ and∇∗ are the covariant derivatives corresponding to g and ĝ, respectively.
The connections ∇α and ∇−α are dual with respect to λ, ∇−1 = ∇, ∇1 = ∇∗ and
∇0 = ∇̄ for all g. Clearly, such family of α-connections depends on the choice of
g ∈ Gh and is therefore not unique.

3.2. Commutative Submanifolds

Let ρ, X , Y , and Z be all mutually commuting. Then it is easy to see that
λρ(X, Y ) = Tr ρ−1 XY and

λρ

(∇g
X Y, Z

) = −1 + α∗

2
Tr ρ−2XYZ

where α∗ = 2g′′′(1) + 3. This corresponds to the Fisher metric and the α∗-
connection in the commutative case. It seems to be a natural question to ask if,
for each λ, it is possible to obtain the α∗-connections at least for α∗ ∈ [−1, 1], if
restricted to commutative submanifolds. From the next proposition (and examples
below) it follows that this is not true.

Let the Riemannian metric λ correspond to the equivalence class Gh , resp.
Pm . Let µmax be a measure with supp µ ⊆ [1, ∞], such that µmax coincides with
m on (1, ∞] and µmax({1}) = 1

2 m({1}). Then we have

Proposition 3.3. Let µmax be as above and let gmax be the corresponding operator
convex function. Then gmax ∈ Gh and for each g ∈ Gh, we have

−3 ≤ ĝ′′′
max(1) ≤ g′′′(1) ≤ g′′′

max(1) ≤ 0

Proof: First, it is easy to see that µmax is a positive finite measure and
∫

[0,∞]
dµmax = 1

2

∫
[0,∞] dm = 1

2 . Moreover, µ̂max is concentrated in [0, 1], µ̂max coin-
cides with m on [0, 1) and µ̂max({1}) = 1

2 m({1}), so that µmax + µ̂max = m. It
follows that gmax ∈ Gh . Let now g ∈ Gh and let µ ∈ Pm be the corresponding
measure. Then

g′′′(1) = −6
∫

[0,∞]

1

1 + s
dµ(s)

and∫
[0,∞]

1

1 + s
dµ(s) =

∫
(1,∞]

s

1 + s
dµ(s−1) + 1

2
µ({1}) +

∫
(1,∞]

1

1 + s
dµ(s)

≥
∫

(1,∞]

1

1 + s
dm(s) + 1

4
m({1}) =

∫
[0,∞]

1

1 + s
dµmax ≥ 0
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and similarly, ∫
[0,∞]

1

1 + s
dµ(s) ≤

∫
[0,∞]

1

1 + s
dµ̂max(s) ≤ 1

2 �

4. EXAMPLE 1: THE EXTREME BOUNDARY OF G
The extreme boundary of G consists of the functions

gs(w) = 1 + s

2

(w − 1)2

w + s
for s ≥ 0

g∞(w) = 1

2
(w − 1)2

We have ĝs = gs−1 for s > 0 and ĝ0 = g∞, g1 being the only symmetric one
of these functions. The corresponding measures are µs(t) = 1

2δ(s − t).
Let s ∈ [0, 1]. Denote hs = gs + ĝs , then

hs(w) = (1 + s)2

2
(w − 1)2 w + 1

(w + s)(sw + 1)

Let λs be the corresponding monotone metric. It is easy to see that gs,max = ĝs

and that

Gs := Ghs =
{

gα = 1 − α

2
gs + 1 + α

2
gs−1 : α ∈ [−1, 1]

}

In particular, G1 = {g1}. It follows that for each λs , we have a unique family
of α-connections. If we consider commutative submanifolds, we obtain classical
α∗-connections with α∗ ∈ [−3 1−s

1+s , 3 1−s
1+s ]. Two important special cases, s = 1 and

s = 0 will be treated below.

4.1. The Metric of Bures

Let us consider the previous example with s = 1. Then

h1(w) = 2
(w − 1)2

w + 1

and the corresponding monotone metric is given by

λ1ρ(X, Y ) = Tr X
2

Lρ + Rρ

(Y )

It is the smallest metric in the class of monotone metrics. We have already seen
that the corresponding equivalence class consists of only one function g1. It means
that the only connection that we can obtain is the metric connection ∇̄.
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4.2. The Largest Monotone Metric

Let s = 0. Then

h0(w) = 1

2
(w − 1)2 w + 1

w

and λ0 is given by

λ0ρ(X, Y ) = Tr X
1

2

(
R−1

ρ + L−1
ρ

)
(Y )

It is the largest monotone metric. On commutative submanifolds, we obtain α∗

-connections for α∗ in the largest possible interval α∗ ∈ [−3, 3]. It is easy to see
from Proposition 3.3 that this is the only monotone metric with this property.

5. STATISTICAL MANIFOLDS

The manifold D+ with a monotone metric and a class of α-connections can
be regarded as a statistical manifold in the sense of Lauritzen (Amari et al., 1987).
A statistical manifold is a triple (M, g, D̃), where M is a differentiable manifold,
g a metric tensor and D̃ a symmetric covariant 3-tensor, called the skewness of the
manifold. On M , a class of α-connections is introduced by

∇α
X Y = ∇̄X Y − α

2
D(X, Y ), (7)

where ∇̄ is the metric connection and the tensor D is defined by D̃(X, Y, Z ) =
g(D(X, Y ), Z ). These connections are torsion free, this is equivalent to symmetry
of D̃, resp. D. The Riemannian curvature tensor is defined as

Rα(X, Y, Z , W ) = g
(∇α

X∇α
Y Z − ∇α

Y ∇α
X Z − ∇α

[X,Y ] Z , W
)

Statistical manifolds satisfying Rα = R−α for all α are called conjugate sym-
metric. It is proved that R−α − Rα = α{F(X, Y, Z , W ) − F(Y, X, Z , W )}, where
F(X, Y, Z , W ) = (∇̄X D̃)(Y, Z , W ), so that a statistical manifold is conjugate sym-
metric if and only if the tensor F is symmetric. It also follows that the condition

∃α0 
= 0, Rα0 = R−α0

is sufficient for conjugate symmetry.
Let now λ be a monotone metric on D+ and let Gh be the corresponding

equivalence class. Let g ∈ Gh such that g is not symmetric and let us consider the
corresponding family of connections. Let

D(X, Y ) = ∇X Y − ∇∗
X Y

Then the triple (D+, λ, D̃) is a statistical manifold, with D̃(X, Y, Z ) = λ(D(X, Y ),
Z ), and the family of connections has the form (7).
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Let K be a covariant k-tensor field, then its symmetrization K sym is defined as

K sym(X1, . . . , Xk) = 1

k!

∑
π

K
(
Xπ (1), . . . , Xπ (k)

)

where π runs over all permutations of the set {1, . . . , k}.

Proposition 5.1. Let T sym
s be the symmetrization of �Ts. Then D̃ has the form

D̃(X, Y, Z ) = 6
∫

[0,∞]
T sym

s (X, Y, Z ) d(µ − µ̂)(s)

Proof: Straightforward from Proposition 3.2. �

Let us now compute the Riemannian curvature tensor Rα of the α-connection.

Proposition 5.2. Let X, Y, Z , W be vector fields on M+ and let R̄ = R0. Then

Rα(X, Y, Z , W ) = R̄(X, Y, Z , W ) + α

2
{F(Y, X, Z , W ) − F(X, Y, Z , W )}

+ α2

4
{λ(D(X, W ), D(Y, Z )) − λ(D(X, Z ), D(Y, W ))}

Proof: As we are going to establish a tensorial equality, we may suppose that
[X, Y ] = 0. As the metric connection is symmetric, we have ∇̄X Y − ∇̄Y X = 0.
From (7) we obtain, using symmetry of D̃

λ
(∇α

X∇α
Y Z , W

) = λ(∇̄X ∇̄Y Z , W ) − α

2
{λ(∇̄X D(Y, Z ), W ) + λ(D(X, ∇̄Y Z ), W )}

+ α2

4
λ(D(X, W ), D(Y, Z ))

Subtracting the expression with interchanged X and Y and using self-duality and
symmetry of ∇̄ completes the proof. �

Corollary 5.1. Let the manifold be conjugate symmetric. Then we have

Rα(X, Y, Z , W ) = R̄(X, Y, Z , W )

+ α2

4
{λ(D(X, W ), D(Y, Z )) − λ(D(X, Z ), D(Y, W ))}

If θ �→ ρ(θ ) is a smooth parametrization of D+, then

Rα
i jkl(θ ) = R̄i jkl(θ ) + α2

4

∑
β,γ

(D̃ilβ D̃ jkγ − D̃ikβ D̃ jlγ )λβγ

where λi j = (λ−1)i j .
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Corollary 5.2. If ∃α0 
= 0, such that Rα0 = 0, then

Rα(X, Y, Z , W ) = α2 − α2
0

4
{λ(D(X, W ), D(Y, Z )) − λ(D(X, Z ), D(Y, W ))}

for ∀α. Moreover, there exists a parametrization, θ �→ ρ(θ ), such that

Rα
i jkl = α2 − α2

0

4α2
0

∑
β,γ

(�ilβ� jkγ − �ikβ� jlγ )λβγ

where �i jk = λ(∇−α0
∂i

∂ j , ∂k) are the Christoffel symbols of ∇−α0 .

Proof: The connections ∇α and ∇−α are mutually dual, therefore 0 = Rα0 =
R−α0 . It follows that the manifold is conjugate symmetric and we may use
Corollary 5.1.

Further, let us define

Dα0 (X, Y ) = ∇−α0 − ∇α0 ,

then Dα0 = α0 D and

∇α = ∇̄ − α

2α0
Dα0

It follows that

Rα(X, Y, Z , W ) = α2 − α2
0

4α2
0

{λ(Dα0 (X, W ), Dα0 (Y, Z ))

− λ(Dα0 (X, Z ), Dα0 (Y, W ))}
As the manifold is ±α0-flat, there exists an α0-affine parametrization θ �→ ρ(θ ),
i.e. such that ∇α0

∂i
∂ j = 0 for all i, j . It follows that

D̃α0
i jk = λ(Dα0 (∂i , ∂ j ), ∂k) = �i jk , ∀i, j, k �

Corollary 5.3. If ∃α1 
= ±α2 such that Rα1 = Rα2 = 0, then Rα = 0 for all α.

Proof: We may suppose that α1 
= 0 and use Corollary 5.2. �

6. EXAMPLE 2: α-DIVERGENCES

Let

gα =




4

1 − α2

(
1 + w

2
− w

1+α
2

)
α 
= ±1

− log w α = −1

w log w α = 1
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Then gα ∈ G for α ∈ [−3, 3]. Moreover, ĝα = g−α . The corresponding family of
relative entropies and monotone metrics was defined by Hasegawa (1993). We have

λα(X, Y ) = ∂2

∂s∂t
Tr fα(ρ + s X ) f−α(ρ + tY )|t=s=0

where fα is the family of functions defined in Section 1. It is easy to show that
the corresponding affine connections ∇gα coincide with the α-connections for λα

defined in Jenčová (2001a). As the connections are torsion-free, this is the only
case when this may happen, see also Jenčová (2001b).

There are some important special cases. For α = ±1 we obtain the well known
Bogoljubov-Kubo-Mori (BKM) metric. Another important example is α = ±3,
corresponding to the largest monotone metric, see Example 4.2. This is the unique
monotone metric that is contained in both classes λα and λs from Section 4.

Let us fix α0 ∈ (0, 3]. Then

hα0 (w) = gα0 (w) + g−α0 (w) = 4

1 − α2
0

(
1 − w

1−α0
2

)(
1 − w

1+α0
2

)

If we proceed as in the proof of Corrolary 5.2, we see that the family of connections

∇α = ∇̄ − α

2α0
Dα0 ,

can be obtained from Gα0 = Ghα0
for α ∈ [−α0, α0]. In particular, ∇α0 = ∇gα0 . As

it was shown in Jenčová (2001a), the connection ∇±α0 is flat, i.e. the Riemannian
curvature tensor R±α0 vanishes. Hence, for the -α0-affine parametrization θ ,

Rα
i jkl = α2 − α2

0

4α2
0

{
λα0

(∇α0
∂i

∂l , ∇α0
∂ j

∂k
) − λα0

(∇α0
∂i

∂k , ∇α0
∂ j

∂l
)}

= α2 − α2
0

4α2
0

∑
β,γ

(
�

α0
ilβ�

α0
jkγ − �

α0
ikβ�

α0
jlγ

)
λβγ

where

�
α0
i jk = Tr ∂i∂ j fα0 (ρ)∂k f−α0 (ρ)

In particular, for α0 = 1 (the BKM metric), ∇g−1 and ∇g1 correspond to the
mixture and exponential connections ∇ (m) and ∇ (e), respectively. The α-connection
is then a convex mixture of the (m) and (e)-connections,

∇α = 1 − α

2
∇ (m) + 1 + α

2
∇ (e)

In the commutative case, this is an equivalent definition of the α-connections. If we
consider the natural affine parametrization ρ(θ ) = ρ0 + ∑

i θi Xi , the coefficients



1648 Jenčová

of Riemannian curvature tensor can be written in the form

Rα
i jkl = α2 − 1

4
Tr

∫ 1

0
{∂i∂ j log(ρ)ρ t∂ j∂k log(ρ)ρ1−t

− ∂i∂k log(ρ)ρ t ∂ j∂l log(ρ)ρ1−t } dt

If {Xi } is an orthonormal basis of D with respect to the metric λBKM
ρ0

, we may
compute the coefficients at θ = 0 as

Rα
i jkl = α2 − 1

4

∑
β

(�ilβ� jkβ − �ikβ� jlβ)

where

�i jk = Tr ∂i∂ j log(ρ)Xk = −Tr Xk

∫ ∞

0
[(ρ0 + s)−1 Xi (ρ0 + s)−1 X j (ρ0 + s)−1

+ (ρ0 + s)−1 X j (ρ0 + s)−1 Xi (ρ0 + s)−1] ds

As it was already proved e.g. in Petz (1994), the Riemannian curvature R̄ of the
metric connection given by λBKM is not equal to 0. Using Corrolary 5.3, it follows
that Rα = 0 if and only if α = ±1.
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